

Tannslitasje-pasienten

veivalg hvis årsaken er primært mekanisk eller på grunn av syreangrep

Asbjørn Jokstad Prosthodontics

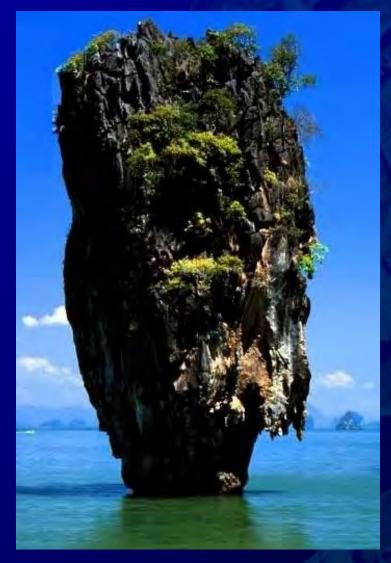
Dental lesions

Carious etiology Non-carious etiology **Developmental** Toxic Hereditary Acquired Discoloration Fracture (Tooth) Surface lesions

Management?

Erosion (clinical diagnosis)

Original Definition: Progressive loss of hard dental tissue by chemical processes not involving bacterial action



Erosion: <u>ASTM:</u> American Society for Testing & Materials Committee on Standards:

"The progressive loss of a material from a solid surface due to mechanical interaction between that surface and a fluid, a multicomponent fluid, impinging liquid or solid particles"

Erosion examples:

Epesion Corrosion! 'Progressive loss of hard dental tissue by chemical processes not involving bacterial action"

Corrosion:

grade 1

grade 2

grade 3

Erosion Corrosion Abrasion (clinical diagnosis) Loss by wear of dental tissue caused by friction of a foreign substance (dentifrice, toothbrush, objects)

Attrition (clinical diagnosis) 'Loss by wear of surface of tooth or restoration caused by tooth to tooth contact during mastication or parafunction"

Erosion Corrosion Abrasion Attrition

Abfraction (clinical diagnosis)

"Loss of tooth surface at the cervical areas of teeth believed to be caused by tensile and compressive forces during tooth flexure"

Grippo et al. JADA 2004 135; 1109

STRESS [Microfracture/ Abfraction] Endogenous Exogenous FRICTION [Wear] Endogenous (Attrition) Exogenous (Abrasion)

CORROSION [Chemical Degradation] Endogenous Exogenous Grippo et al. JADA 2004 135; 1109

STRESS [Microfracture/ Abfraction] Endogenous Exogenous

Endogenous Parafunction Occlusion Deglutition <u>Exogenous</u> Mastication Habits Occupational behaviors Use of Dental appliance

CORROSION [Chemical Degradation] Endogenous Exogenous

FRICTION [Wear] Endogenous (Attrition) Exogenous (Abrasion)

> Endogenous Parafunction Deglutition <u>Exogenous</u> Mastication Dental Hygiene Habits Occupational behaviors Use of Dental appliance

<u>Endogenous:</u> Plaque – gingival crevicular fluid – Gastric juice <u>Exogenous:</u> Diet -Occupational exposures - Certain drugs/alcolhol

Patient management

Patient management - Strategy 1

Establish status
 Restore
 Carious & non-carious lesions

Patient management - Strategy 1

Symptomatic
1. Establish status
2. Restore

carious & non-carious
lesions

Diagnosis and etiology is of limited interest. ...perhaps only for the sake of guessing prognosis... DANGER: Unpredictive treatment outcome!

Patient management - Strategy 2

Symptomatic
1. Establish status
2. Restore

carious & non-carious
lesions

Diagnosis and etiology

Diagnosis and etiology is of limited interest. Perhaps only for the sake of estimating prognosis. Causal

- Diagnose correctly Carious vs non-carious
 Identify cticlemy
- 2. Identify etiology a. carious
 - b. non-carious lesions
- 3. Restore Carious & non-carious
 - lesions
- 4. Reduce risk
 - a. carious
 - b. non-carious lesions

Diagnosis

Abrasion-attrition-corrosion?

Abfraction-abrasion-corrosion?

Abrasion-corrosion?

Abrasion-corrosion?

Abrasion-attrition-corrosion?

Abfraction-abrasion?

Attrition-corrosion?

Corrosion – clinical appearance (anterior)

- Broad concavities within smooth surface enamel
- Increased incisal translucency
- Wear on non-occluding surfaces
- Loss of surface characteristics of enamel (perikymata) in young children
- Preservation of enamel "cuff" in gingival crevice is common
- > Hypersensitivity

Corrosion – clinical appearance (posterior)

- Cupping of occlusal surfaces, (incisal grooving) with dentin exposure
- Wear on non-occluding surfaces
- "Raised" amalgam restorations
- Clean, non-tarnished appearance of amalgams
- Preservation of enamel "cuff" in gingival crevice is common

Abrasion – clinical appearance

Usually located at cervical areas of teeth
 Lesions are more wide than deep
 Premolars and cuspids are commonly affected

Attrition – clinical appearance

Matching wear on occluding surfaces
Shiny facets on amalgam contacts
Enamel and dentin wear at the same rate
Possible fracture of cusps or restorations

Attrition vs corrosion

Abfraction – clinical appearance

Affects buccal / labial cervical areas of teeth
 Deep, narrow V-shaped notch
 Commonly affects single teeth with excursive interferences or eccentric occlusal loads

Cervical loss

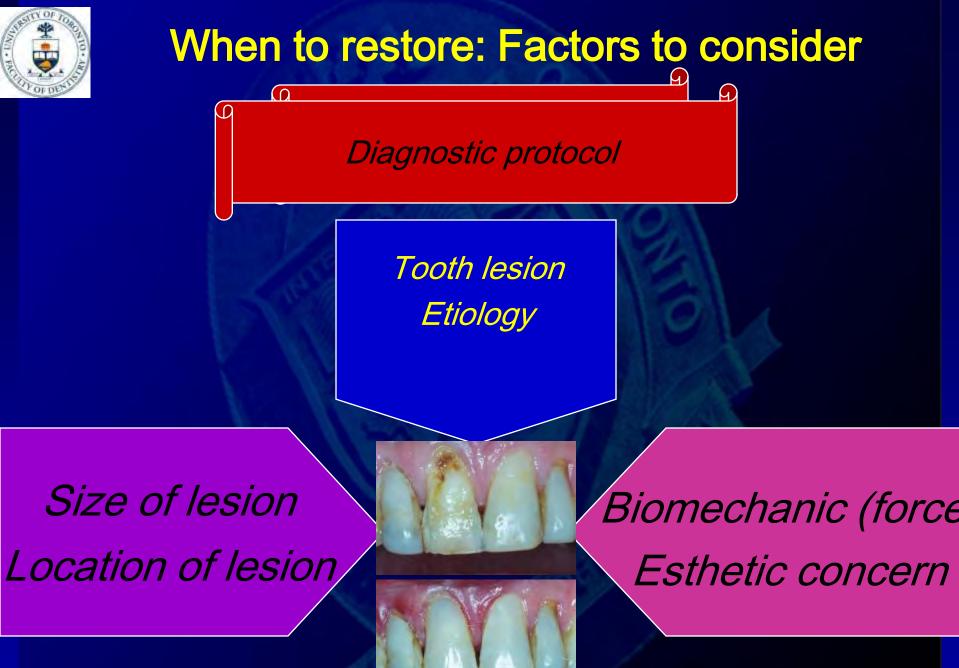
Locations: Ling./Bucc. Buccal Buccal V-form Form: Wedge Edge: sharp smooth sharp (sometimes subgingival) Enamel: rough smooth/rough smooth often slightly

polished

Abrasion

Probably:

Abfraction


Abfraction vs Abrasion

1. Diagnostic Protocol 2. Types of lesions Carlous vs pon-carlous lesions 2. Identify etiology (causes) (a. carlous) & b. non-carlous lesions

1. Diagnostic Protocol 2. Types of lesions Carious vs non-carious lesions 2. Identify causes > (a. carious) & b. non-carious lesions 3. Restore

Restorative material

Esthetics Biological cost Acid resistance Wear resistance Longevity

Alternatives			
Composite -GIC Composite <u>Veneer GIC -hybrid resin</u>			
Veneer	GIC	-hybrid	resin
++	- /	_/+	+
-	++/	+	+
++	-	-/+	+
++	- 0	_/+	+
++	/+	_/+	/++

Restorative planning

Tooth preparation Minimal extension Supragingival margins No extra undercuts or retention lock Estimated force No compression versus flexure of tooth >Wear type Esthetics on anterior teeth and premolars

1. Diagnostic Protocol 2. Types of lesions Carious vs non-carious lesions 2. Identify causes (a. carious) & b. non-carious lesions

3. Restore

carious & non-carious lesions Restoration Composites & Bonding

Abfraction vs. Abrasion

Glassionomer or microfill composite resin

Hybrid microfill composite resin

Glassionomer cement-resin hybrids

Two subgroups a. Material polymerises without light initiation b. Light initiation is required Most products contains 4.5%-6% resin

Selection of restorative material? Composite resin vs. glassionomer

Cavity situation:

- Supragingival margin: moisture sensitive
- Cementum gingival margin
- Dentin substrate: sclerotic dentin(?), depth of preparation, tubule orientation
- Etiology:
- >High caries risk: need for F-
- Cervical abrasion: wear
- >Abfraction: flexion

Risk reduction : Corrosion

- Diminish frequency & severity of acid challenges
- Decrease amount/frequency of acidic foods / drinks
- Acidic drinks should be drunk quickly rather than sipped. The use of a straw would reduce the corrosive potential of soft drinks
- If undiagnosed / poorly controlled gastroesophageal reflux is suspected, refer to a physician
- In the case of bulimia, a physician or psychologist referral is appropriate
- A patient with alcoholism should be assisted in seeking treatment in rehabilitation programs

Risk reduction : Corrosion

Enhance acid resistance, remineralization and rehardening of the tooth surfaces

- Have the patient use daily topical fluoride at home
- Fluoride can be applied in the office 2-4 times a year. A fluoride varnish is recommended

Improve chemical protection

- Neutralize acids in the mouth by dissolving sugar-free antacid tablets 5 times a day, particularly after an intrinsic or extrinsic acid challenge
- Dietary components such as hard cheese (provides calcium and phosphate) can be held in the mouth after acidic challenge (e.g., hold cheese in mouth for a few minutes after eating a fruit salad)

Risk reduction: Corrosion+Friction

Enhance the defense mechanisms of the body (increase salivary flow and pellicle formation)

Saliva provides buffering capacity that resists acid attacks. This buffering capacity increases with salivary flow rate. Saliva is also supersaturated with calcium and phosphorus, which inhibits demineralization of tooth structure

Saliva reduces tooth friction

Stimulation of salivary flow by use of a sugarless lozenge or chewing gum should be encouraged

Risk reduction : Friction

Decrease abrasive forces

- Use soft toothbrushes and dentifrices low in abrasiveness in a gentle manner
- Do not brush teeth immediately after an acidic challenge to the mouth, as the teeth will abrade easily
- Rinsing with water is better than brushing immediately after an acidic challenge

Risk reduction: friction, stress, corrosion

Decrease abrasive forces

- Gentle use of soft toothbrushes and dentifrices low in abrasiveness
- No brushing immediately acidic challenges
- Rinsing with water after an acidic challenge

Provide mechanical protection

Consider application of composites and direct bonding where appropriate to protect exposed dentin

Construction of an occlusal guard is recommended if a bruxism habit is present