Role of the implant design on immediate loading

Critical appraisal of the evidence from clinical trials

Asbjørn Jokstad, DDS, PhD
UiT The Arctic University of Norway
University of Toronto

Publications reporting data from clinical studies on dental implants (n=4309)

Publications on clinical studies on dental implants, with focus on effects of implant design factors (n=566)
Immediate function - terms

Patient

A patient with an edentulous space or jaw desiring immediate restoration of form and function

i.e., *immediate loading*.

A patient with a terminal tooth or dentition desiring immediate restoration of form and function

i.e., *immediate implant* + *immediate placement* + *immediate loading*.

*«Functional loading» AKA occlusal loading

OR

«Nonfunctional loading» = «immediate function»

Immediate function modalities -

Publications reporting data from clinical studies on dental implants, with focus on immediate loading (n=693 / 4309 reports)
General findings on immediate loading

Systematic reviews: 53 (11 in last 2 years)
- Longest clinical research study: 44p/176i over 12 years (range 8-18), retrospective study ITI-tps anterior mandible (Lambrecht & Hodel 2007)

RCT trials: 121 reports (18 in last 2 y.), 76 focus on loading comp., 51 unique RCTs
- First: 10 p. with 40 Nobelbiocare Mk2 l. edent.mand. OD (Chiapasco et al. 2001)
- Largest: 266 p. with 325 Straumann SLA i. for crown/3-4i-FDP (Zöllner et al. 2008)
- Longest: 10 y. 106p/212i-OD (Ma et al. 2010) & 9 y. 44p/121i (Rocci et al. 2013)

121 RCT papers → 76 comparing healing protocols, 51 unique RCTs

Clinical trials with focus on shortened loading protocols according to implant brand

Prior to 2006 (n=188)

<table>
<thead>
<tr>
<th>Implant Brand</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nobel Biocare</td>
<td>42%</td>
</tr>
<tr>
<td>Other manuf.</td>
<td>22%</td>
</tr>
<tr>
<td>Biomet 3i</td>
<td>7%</td>
</tr>
<tr>
<td>Dentsply</td>
<td>12%</td>
</tr>
<tr>
<td>Astra (Dentsply)</td>
<td>9%</td>
</tr>
<tr>
<td>Other</td>
<td>21%</td>
</tr>
</tbody>
</table>

Period 2010-2015 (n=304)

<table>
<thead>
<tr>
<th>Implant Brand</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nobel Biocare</td>
<td>45%</td>
</tr>
<tr>
<td>Astra (Dentsply)</td>
<td>13%</td>
</tr>
<tr>
<td>Biomet 3i</td>
<td>7%</td>
</tr>
<tr>
<td>Dentsply</td>
<td>7%</td>
</tr>
<tr>
<td>Other manuf.</td>
<td>23%</td>
</tr>
<tr>
<td>Other</td>
<td>37%</td>
</tr>
</tbody>
</table>
Immediate loading vs. healing
(SR s 2000-2006)

- Glauser et al. (17 reports) *
- Nkenke & Fenner (36)
- Del Fabbro et al. (71)
- Ioannidou & Doufexi (Early loading, 13)
- Cooper et al. (Edent. Maxilla (9))
- Altard & Zarbi (93) *
- Esposito et al. (RCTs (7))
- Misch et al. (24) *
- Morton et al. (Chapagasso (Edent (45))
- Ganeles&Wismeijer (Single/Part. Edent. (25))
- Lekholm (15) *
- Aparicio et al. (45)
- Gapak et al. (26) *
- Szmukler-Mancier et al. (Vitro & vivo (22))

*discuss possible effects of implant design factors

--

Immediate loading vs. healing
(2007-2010)

- Ma & Payne (Mand. 2i-OD (25))
- Alsaabeha et al. (Mand. OD (10))
- Ateh et al. (Postextraction single molars (9)) *
- Ateh et al. (Single (5))
- Ateh et al. (Postextraction single (10)) *
- Esposito et al. (RCTs (22))
- Gallucci et al. (Edentulous (6)) *
- Roccuzzo et al. (Partial/Edent. Post. Max. (9))
- Contaro et al. (Earlyload. Partial/Edent. (19))
- Drubetz & Balseer (Partial/Edent. Anterior (10))
- DelRouck et al (Postextraction single ane. (11))
- Henry & Liddelow (‘20 best papers’)
- Sennerby & Gottlow (Publications>2005 (6))
- Den Hartog et al. (Partial/Edent. Anterior (19))
- Esposito et al. (RCTs (11))
- Kawai & Taylor (Mand. OD (9))
- Avila et al. (28)
- Jokstad & Carr (RCT+CCTs (22))

*discuss possible effects of implant design factors

--

Immediate loading vs. healing
(2011-2015)

- Del Fabbro et al. (Postextraction, (50)) *
- Sanz-Sanchez et al. (RCTs (29))
- Chrcanovic et al. (Occl vs Non-occl. (11))
- Benic et al. (single, RCTs, (11))
- Chen & Buser (Postextraction anl. Maxilla (50))
- Papaspyridakos et al. (Edent. Fixed. (62))
- Schrott et al. (Partial/Edent. (24))
- Schimmel et al. (Edent. Remova.. (58))
- Schrott et al. (Part. Edent. (24))
- Su et al. (RCTs, 26)
- Esposito et al. (RCTs (26))
- Suarez et al. (6)
- Lang et al. (Postextraction, (46))
- Menini et al. (All-on-4, (11)) *
- Strub et al. (9) *
- Enríquez-Sacristán et al. (Postextraction (13))

*discuss possible effects of implant design factors
Pre-surgery modifiers

General & local risk factors
Bone quantity and quality (jaw)
Vertical dimension of occlusion
Parafunctional habits

Surgery modifiers?
Flap / site preparation
Primary stability

Additional modifiers?
Single implant vs. Splinted implants
Occluding vs. Non-occluding implants
Implant design, including length

Surgery modifiers?

Flap / site preparation
Primary stability

Additional modifiers?
Single implant vs. Splinted implants
Occluding vs. Non-occluding implants
Implant design, including length

Surgery modifiers?
Flap / site preparation
Primary stability
Residual infection
Socket defect shape & facial plate integrity/thickness
Facial position of the implant
Soft tissue biotype

Pre-surgery modifiers

General findings on immediate loading

Systematic reviews: 53 (11 in last 2 years)

Longest clinical research study: 44p/176i over 12 years (range 8-18), retrospective study, ITI-tps anterior mandible (Lambrecht & Hodel 2007)

#RCT trials: 121 reports (18 in last 2 y.), 76 focus on loading comp., 51 unique RCTs

First: 10 p. with 40 Nobelbiocare Mk2 i. edent.mand. OD (Chiapasco et al. 2001)

Largest: 266 p. with 325 Straumann SLA i. for crown/3-4i-FDP(Zöllner et al. 2008)

Longest: 10 y. 106p/212(2i-OD (Ma et al. 2010) & 9 y. 44p/121i (Rocci et al. 2013)

Additional modifiers?

Single implant vs. Splinted implants
Occluding vs. Non-occluding
Implant design, including length

Pre-surgery modifiers

General & local risk factors
Bone quantity and quality (jaw)
Vertical dimension of occlusion
Parafunctional habits

General findings on immediate implants

Systematic reviews: 22 (11 in last 2 years)

First clinical research study: Single Tübinger-implants Al₂O₃ (Schulte 1978)

Longest clinical research study: Retrospective data of 1608 i./981p. over 25y. Nobel Biocare implants (Balshi et al. 2013)

#RCT trials: 51 (9 in last 2 years)

First: 36p./43i, Ti-tps vs Ti_HA +/- DFDB (Gher et al. 1994)

Largest: 208 p./i. Straumann-SLA, after 3 weeks healing (Lang et al. 2007)

Longest follow up: 3 y. 93p/99i Osseospeed (Sanz et al. 2010) & (10 y. 72p/i. Osseotite, placement 10days after extraction (Schropp et al. 2010)

Pre-surgery modifiers

General & local risk factors
Bone quantity and quality (jaw)
Vertical dimension of occlusion
Parafunctional habits

Surgery modifiers?
Flap / site preparation
Primary stability
Residual infection
Socket defect shape & facial plate integrity/thickness
Facial position of the implant
Soft tissue biotype

Additional modifiers?
Single implant vs. Splinted implants
Occluding vs. Non-occluding implants
Implant design, including length
Publications reporting data from clinical studies on dental implants, with focus on immediate implants with immediate loading (n=161 / 693 reports)

General findings, immediate implants with immediate loading

Systematic reviews:
- 9 (2 in last 2 years)

First clinical research study:
- 10p./130i., retrosp., edent.mand., Brånemark turned t. (Balshi & Wolfinger 1997)

Longest clinical research study:
- 7 y., retrosp., 80p/519i., edentulous jaws, 3i. implants, (Testori et al. 2013)

RCT trials:
- 14 (4 in last 2 years)

First:
- vs.: (i+dl) 40p. (Crespi ea. 2008)– (ii+dl) 76p. (Block ea. 2009)

Largest:
- vs.: Xenograft+membrane, heal 4m.+il, 106p., single max. (Felice et al. 2011)

Longest follow up:
- 5 years 71p/120i., single posterior, (Prosper et al. 2010)

Surgery Modifiers:
- Pre-surgery modifiers
 - General & local risk factors
 - Bone quantity/quality (jaw)
 - Vertical dimension of occlusion
 - Parafunctional habits
- Site / Site preparation
 - Primary stability
 - Residual infection
 - Socket defect shape & facial plate integrity/thickness
 - Facial position of the implant
 - Soft tissue type

Additional modifiers:
- Single implant vs. Splinted implants
- Occluding vs. Non-occluding
- Implant design, including length

Effects of implant design factors on outcome (n=566 reports)

- Immediate implant (n=462 reports)
- Immediate loading (n=693 reports)

- Immediate implant (n=462 reports)
- Immediate loading (n=693 reports)

- Effects of implant design factors on outcome (n=566 reports)

- Immediate implant (n=462 reports)
- Immediate loading (n=693 reports)

- Effects of implant design factors on outcome (n=566 reports)
Effects of implant design factors on outcome (n=566 reports)

- Artzi et al. (2010): Short (8-mm) and narrow (3.3-mm) implant configurations were significantly (P < .05) associated with failure (RCS)
- Zafiropoulos et al. (2009): The type of implant, position, and timing of placement and loading did not influence the survival rate of this treatment method (RCS)
- Li et al. (2009): The implant survival rate was found to be not related to implant diameter, system, configuration, type of abutment connections, and position of implants (P > .05) (RCS)

Immediate implant (n=462 reports)
Immediate loading (n=693 reports)

9 RCTs (13 reports)
- At 2 y: ANKYLOS better than (3)Certain (Romanos ea 2013)
- At 1 y: Ostem TSBill HA & Zimmer TSV equivalent (Kim ea 2013)
- At 9 y: Brånemark TiUnite better than turned (Rocci ea 2013)
- 3y: idem. (Fung ea 2011)
- 3y: idem. (Lidlovsk&Wenoo 2010)
- At 1 y: Brånemark TiUnite & turned equivalent (Froberg ea 2000)
- At 3 y: NobelActive & -Replace equivalent (Amhart ea 2012)
- At 10y: Brånemark, Southern, TI Ster-Oss equivalent (Ma ea 2010)
- At 3y: Brånemark MN2 & conical equivalent (Gatti&Chiapasco 2002)
Edentulous maxilla, effects of implant design in rehabilitation, studies on immediate loading

<table>
<thead>
<tr>
<th>Design</th>
<th>Diameter</th>
<th>Length</th>
<th>Surface</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>Degidi & Piatelli 2003</td>
<td>Li 2009</td>
<td>Testori et al. 2013</td>
<td>Malo et al. 2011a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design</th>
<th>Diameter</th>
<th>Length</th>
<th>Surface</th>
<th>Material</th>
</tr>
</thead>
</table>

Summary

187 titles on immediate loading → 22 papers reporting on 19 RCT/CCT trials

Relative Differences in Survival Estimates

<table>
<thead>
<tr>
<th>Reference</th>
<th>Timepoint (Months)</th>
<th>2% difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibanez (2005)</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Relative Differences in Survival Estimates

~2% lower survival & consistently wider confidence intervals

Implant morphology (smooth, microrough, rough)

2% difference in favor of control
Thank you for your attention

Asbjørn Jokstad
asbjorn.jokstad@uit.no