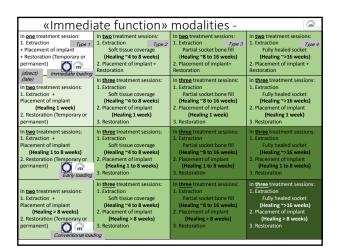
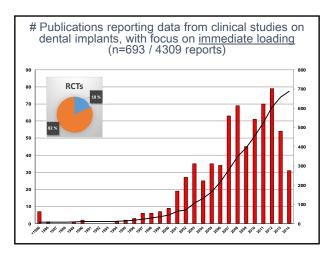


Role of the implant design on immediate loading

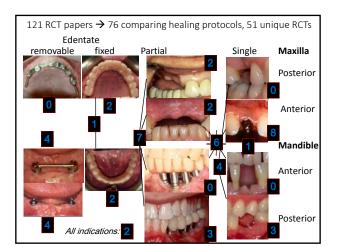

Critical appraisal of the evidence from clinical trials

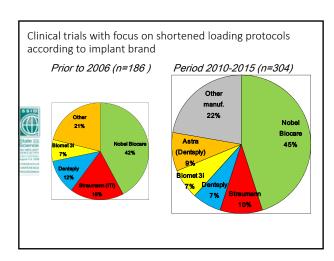

Asbjørn Jokstad, DDS, PhD UiT The Arctic University of Norway University of Toronto

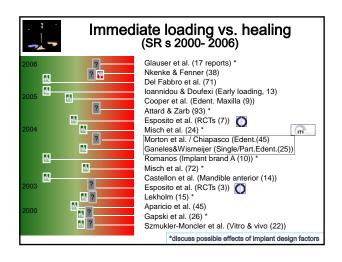
«Immediate function» - terms Patient A patient with an edentulous space or jaw desiring immediate restoration of form and function i.e., «immediate loading*» A patient with a terminal tooth or dentition desiring immediate restoration of form and function i.e., «immediate implant» / «immediate placement» pluss «immediate loading»* *«Functional loading» AKA occlusal loading or «Nonfunctional loading» = («Immediate restoration»)

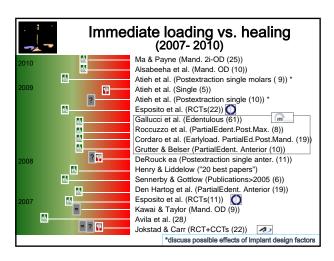
General findings on immediate loading

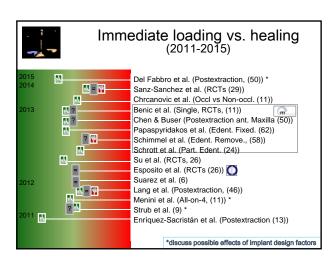
693 reports

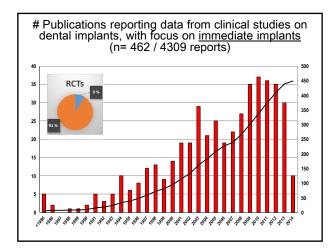

Systematic reviews: 53 (11 in last 2 years)

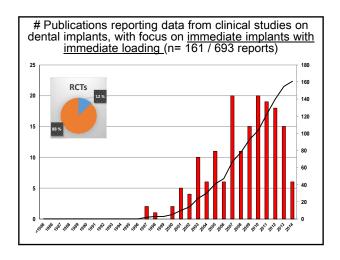

<u>First clinical research study:</u> 1968 – 1975 (Brånemark et al. 1977: Experience over a 10-year period & 4 tps-implants anterior mandible (Ledermann 1978)


<u>Longest clinical research study:</u> 44p/176i over 12 years (range 8-18), retrospective study, ITI-tps anterior mandible (Lambrecht & Hodel 2007)

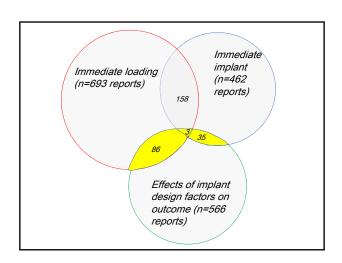

#RCT trials: 121 reports (18 in last 2 y.), 76 focus on loading comp., 51 unique RCTs

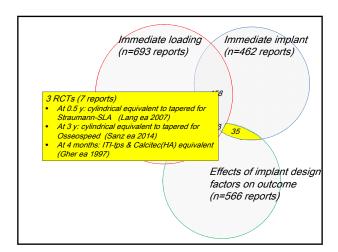

<u>First:</u> 10 p. with 40 Nobelbiocare Mk2 i. edent.mand. OD (Chiapasco et al. 2001)
<u>Largest:</u> 266 p. with 325 Straumann SLA i. for crown/3-4i-FDP(Zöllner et al. 2008)
<u>Longest:</u> 10 y. 106p/212i/2i-OD (Ma et al. 2010) & 9 y. 44p/121i (Rocci et al. 2013)

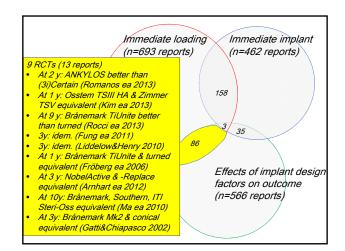


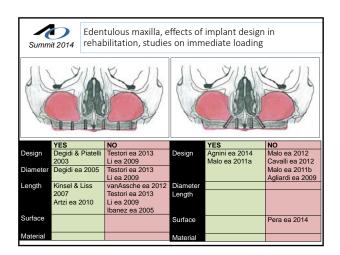


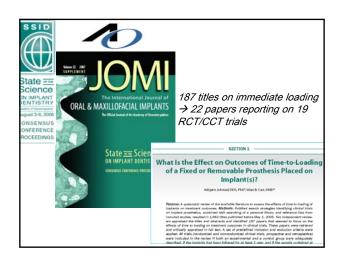
General findings on immediate loading 693 reports # Systematic reviews: 53 (11 in last 2 years) First clinical research study: 1968 – 1975 (Brånemark et al. 1977: Experience over a 10-year period & 4 tps-implants anterior mandible (Ledermann 1978) Longest clinical research study: 44p/176i over 12 years (range 8-18), retrospective study, ITI-tps anterior mandible (Lambrecht & Hodel 2007) #RCT trials: 121 reports (18 in last 2 y.), 76 focus on loading comp., 51 unique RCTs First: 10 p. with 40 Nobelbiocare Mk2 i. edent.mand. OD (Chiapasco et al. 2001) Largest: 266 p. with 325 Straumann SLA i. for crown/3-4i-FDP(Zöllner et al. 2008) Longest: 10 y. 106p/212i/2i-OD (Ma et al. 2010) & 9 y. 44p/121i (Rocci et al. 2013) Pre-surgery modifiers General & local risk factors Bone quantity and quality (jaw) Vertical dimension of occlusion Parafunctional habits Additional modifiers? Single implant vs. Splinted implants Occluding vs. Non-occluding Implant design, including length Surgery modifiers ? Flap / Site preparation

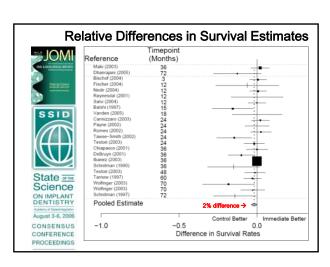

Primary stability


General findings on immediate implants # Systematic reviews: 22 (11 in last 2 years) First clinical research study: Single Tübinger-implants Al₂O₃ (Schulte 1978) Longest clinical research study: Retrospective data of 1608 i./981p. over 25y. Nobel Biocare implants (Balshi et al. 2013) #RCT trials: 51 (9 in last 2 years) First: 36p./43i, Ti-tps vs Ti_HA +/- DFDB (Gher et al. 1994) Largest: 208 p./i. Straumann-SLA, after 3 weeks healing (Lang et al. (2007) Longest follow up: 3 y. 93p/99i Osseospeed (Sanz et al. 2010) & (10 y. 72p/i. Osseotite, placement 10days after extraction (Schropp et al. 2010) Surgery modifiers? Flap / Site preparation Primary stability Skill of Clinician(s) Pre-surgery modifiers General & local risk factors Residual infection Socket defect shape & facial plate integrity/thickness Facial position of the implant Soft tissue biotype Bone quantity and quality (jaw) Vertical dimension of occlusion Parafunctional habits




General findings, immediate implants with immediate loading # Systematic reviews: 9 (2 in last 2 years) 161 reports First clinical research study: 10p./130i, retrosp., edent.mand., Brånemark turned i. (Balshi & Wolfinger 1997) Longest clinical research study: 7 y., retrosp., 80p/519i., edentulous jaws, 3i. Implants, (Testori et al. 2013) #RCT trials: 18 (4 in last 2 years) First: vs.:(ii+dl) 40p.(Crespi ea. 2008)–(i. autograft,heal 4 m., il),76p. (Block ea. 2009) Largest: vs. Xenograft+membrane, heal 4m.,+il, 106p., single max. (Felice et al. 2011) Longest follow up: 5 years 71p/120i, single posterior, (Prosper et al. 2010) Surgery Modifiers? Flap / Site preparation Primary stability Residual infection Pre-surgery modifiers
General & local risk factors
Bone quantity/quality (jaw)
Vertical dimension of
occlusion
Parafunctional habits Skill of Clinician(s) Additional modifiers? Single implant vs. Splinted implants Occluding vs. Non-occluding Implant design, including length Socket defect shape & facial plate integrity/thickness Facial position of the implant Soft tissue biotype




| Artzi et al. (2010): Short (8-mm) and narrow (3.3-mm) implant configurations were significantly (P < .05) associated with failure (RCS) | Zafiropoulos et al. (2009):The type of implant, position, and timing of placement and loading did not influence the survival rate of this treatment method (RCS) | Li et al. (2009: The implant survival rate was found to be not related to implant diameter, system, configuration, type of abutment connections, and position of implants (P > .05). (RCS) | Effects of implant design factors on outcome (n=566 reports)

